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ABSTRACT: Pulmonary arterial hypertension (PAH) is a severe, ~ : : : ——
multifactorial, and frequently misdiagnosed disorder. The aim of T I”‘"' Aadrisa meGhsiomics oC AT petonts I

this observational study was to compare the plasma and urine ll'ii‘ﬂ $ -
metabolomic profiles of PAH patients and healthy control subjects. Correlation analysis: metabolic changes and clnical parameters

Plasma and urine metabolomic profiles were analyzed using the Muldvariate Maear discriminsat analyshs

GC-MS technique. Correlations between metabolite levels and =

clinical parameters among PAH patients, as well as the between-
group differences, were evaluated. The linear discriminant analysis
model, which allows for subject classification in terms of PAH with :

the highest possible precision, was developed and proposed. '
Plasma pyruvic acid, cholesterol, threonine, urine 3-(3-hydrox- o :
yphenyl)-3-hydroxypropanoic acid, butyric acid, 1,2-benzenediol, o - —
glucoheptonic acid, and 2-oxo-glutaric acid were found to build a

relatively accurate classification model for PAH patients. The model reached an accuracy of 91% and significantly improved subject
classification (OR = 119 [95% CI: 20.3—698.3], p < 0.0001). Five metabolites were detected in urine that provide easily available
and noninvasive tests as compared to right heart catheterization. The selected panel of metabolites has potential for early recognition
of patients with dyspnea and faster referral to a reference center.

KEYWORDS: metabolomics, pulmonary arterial hypertension, plasma, urine, multivariate analysis

1. INTRODUCTION histopathological modification in PAH patients includes
remodeling of the pulmonary vasculature as a result of
abnormal proliferation of the smooth muscle cells lining the
pulmonary arteries, which leads to increased PVR." Misdiag-
nosed or unrecognized PAH can lead to right ventricular
dysfunction and, consequently, eventual premature death. The
pathophysiological processes accompanying PAH have not yet
been fully elucidated. Basic knowledge about the potential
pathomechanisms of the disease is mainly based on
experimental animal models.”~" The diagnostic process of
PAH is complex, as other causes of PH have to be excluded,
and no specific marker of the arterial etiology of PH has been
identified. Invasive right heart catheterization (RHC) remains
the gold standard of proper diagnosis and the key guidance of
PAH treatment. Therefore, there is still an urgent need to
explore and propose noninvasive and more specific diagnostic
indicators of the disease.”

Pulmonary hypertension (PH) constitutes a severe, multi-
factorial, and frequently misdiagnosed disorder." PH is defined
as a mean pulmonary arterial pressure (mPAP) above 20
mmHg at rest based on the Sixth World Symposium on
Pulmonary Hypertension” as well as above 25 mmHg at rest
based on the European Society of Cardiology (ESC)/
European Respiratory Society (ERS) guidelines.” However,
from the clinical perspective, additional parameters such as
pulmonary vascular resistance (PVR) and pulmonary capillary
wedge pressure (PCWP) provide a more useful hemodynamic
signature of the disease. According to WHO, ESC 2016, and
the Sixth World Symposium on Pulmonary Hypertension
guidelines, PH is categorized into five groups.”’ This
classification is based on clinical symptoms, pathological
hallmarks, hemodynamic parameters, and treatment strategy.

Pulmonary arterial hypertension (PAH) constitutes a term
that specifically indicates WHO group 1. There are a few

subtypes of PAH related to various etiologies (i.e., idiopathic, Special Issue: Women in Proteomics and Metabolo-

heritable, drug, and toxin induced), different disorders (i.e., mics

connective tissue disease, congenital heart disease, portal Received: May 3, 2023 '
hypertension, human immunodeficiency virus infection, and Published: October 12, 2023 S

schistosomiasis), and features of pulmonary veno-occlusive
disease/or pulmonary capillary hemangiomatosis. The main
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Table 1. Baseline Clinical Characteristics of Patients with the Pulmonary Arterial Hypertension Group (n = 43)“

variables
age (years) 46 + 18
females (n/%) 27 (64%)
height (cm) 162 + 10
weight (kg) 67 + 15
BMI (kg/m?) 26+ 6
PAH classification (1/%)
idiopathic 22 (51%)
connective tissue disease 3 (7%)
congenital heart disease 18 (42%)
WHO functional class (1/%)
1 1 (2%)
il 18 (42%)
I 16 (37%)
v 8 (19%)
comorbidities (11/%)
arterial hypertension 10 (23%)
hypothyreosis 12 (28%)
diabetes mellitus S (12%)
renal failure 4 (9%)
coronary artery disease 6 (14%)
lung disease 8 (19%)
paroxysmal/persistent AF 2 (5%)
physiological measurements LQ median  UQ
HR (beats/min) 68.50 77.0 85.50
SBP (mmHg) 101.75 11550 12575
DBP (mmHg) 6525 70.00 77.00
pulse pressure (mmHg) 34.00 41.50 52.50
laboratory measurements LQ median uQ
BNP (pg/mL) 22.0 51.0 110.00
hemoglobin (g/dL) 13.33 16.20 19.17
PLT (thou./uL) 153.00 187.50 226.50
sodium (mmol/L) 136.25 138.00 140.00
iron (ug/dL) 55.00 79.00 103.00
uric acid (mg/dL) 5.40 6.40 7.80
bilirubin (mg/dL) 0.60 1.08 1.44
GGT (U/L) 16.0 2900 5650
ALP (U/L) 59.0 72.0 89.0
AST (U/L) 15.0 19.0 24.0
ALT (U/L) 13.0 18.0 25.0
creatinine (mg/dL) 0.72 0.85 1.09
6MWT (m) 329.50 399.0  500.50
PAH-specific treatment (1/%)
calcium blockers 4 (9%)
bosentan 14 (33%)
macitentan 4 (9%)
sildenafil 27 (63%)
inhaled iloprost 6 (14%)
treprostinil s.c. 11 (26%)
combined therapy 22 (51%)

other medication (/%)

variables
beta blockers 4 (9%)
statins 9 (21%)
ACEI/sartans 6 (14%)
diuretics 17 (40%)
anticoagulants 8 (19%)
euthyrox 10 (23%)
other 22 (51%)
right heart catheterization parameters LQ median  UQ
mPAP (mmHg) 46.0 56.0 71.0
PCWP (mmHg) 6.25 9.0 11.0
mRAP (mmHg) 3.75 5.50 8.0
CI (mL/kg/min) 1.99 2.60 3.05
PVR (Wood units) 6.55 10.84 15.55
echocardiographic variables LQ median  UQ
RVEDD (mm) 37.0 44.0 49.50
LVEDD (mm) 32,0 38.0 420
RV:LV 1.0 1.10 1.35
right atrial area (cm?) 14.80 19.60 24.85
tricuspid regurgitant velocity 3.50 4.14 4.42
(m/s)
RVSP (mmHg) 56.0 79.0 90.0
TAPSE (mm) 16.50 19.0 22,0
RV S (cm/s) 10.0 12.0 14.0
RVFAC (%) 0.29 0.34 0.43
RVstrain (%) —23.75 -19.50  —14.0
LVEF (%) 54.0 59.0 64.0
LVESV (mL) 21.0 30.0 35.50
LVEDV (mL) 54.0 68.0 84.0
LV GLS (%) 210 -190  -160
pericardial effusion (number of 6 (14%)

pts/%)

“WHO-World Health Organization, AF—atrial fibrillation, HR—
heart rate, SBP—systolic blood pressure, DBP—diastolic blood
pressure, BNP—brain natriuretic peptide, PLT—platelet count,
GGT—gamma-glutamyltranspeptidase, ALP—alkaline phosphatase,
AST—aspartate aminotransferase, ALT—alanine aminotransferase,
6MWT—6 min walk test, s.c.—subcutaneous, ACEI—angiotensin-
converting enzyme inhibitor, ARB—angiotensin receptor blocker,
mPA—mean pulmonary artery pressure, PCWP—pulmonary capillary
wedge pressure, mRAP—mean right atrial pressure, CI—cardiac index,
PVR—pulmonary vascular resistance, RVEDD—right ventricular (RV)
end-diastolic diameter in apical 4-chamber view, LVESD—left
ventricular (LV) end-systolic diameter in apical 4-chamber view,
RV:LV—the ratio of RVEDD to LVEDD, RVSP—RV systolic pressure,
TAPSE—tricuspid annular plane systolic excursion, S’—tissue
Doppler-derived tricuspid lateral annular systolic velocity, RVFAC—
RV fractional area change, LVEF—left ventricular ejection fraction, LV
GLS—left ventricular global longitudinal strain in 2-dimensional
speckle trackingstrain analysis; n—number of patients, data presented
as mean =+ standard deviation or as median and lower quartile (LQ)
as well as upper quartile (UQ).

Metabolomics offers a promising approach to evaluate
comprehensive metabolic signatures of both physiological and
pathophysiological states in biological systems. As a part of
omics sciences, metabolomics constitutes the end point of
genome alterations and provides better representation of the
phenotype compared to gene or protein expression levels.”
Measured metabolite levels reflect the integrated variation
derived from genomic, transcriptomic, proteomic, epigenetic,
and environmental factors. Therefore, untargeted metabolo-
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mics, which aims to detect as many metabolites in biological
samples as possible, can provide useful and comprehensive
knowledge about altered biochemical pathways in PAH. So far,
some applications of untargeted metabolomics in PAH patients
have been reported.””"> However, only one type of biological
material has been evaluated in terms of metabolic alterations.
These recent reports concern mainly serum, plasma, exhaled
breath condensate, or lung tissue samples. In our study both
plasma and urine metabolomic profiles of PAH patients were

https://doi.org/10.1021/acs.jproteome.3c00255
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Figure 1. Plasma (A) and urine (B) preparation procedures for untargeted metabolomic analyses.

compared with a control group. Additionally, the observed
metabolic changes have rarely been correlated with clinical
parameters from RHC to provide more specific metabolic
indicators of PAH.

Therefore, the aim of this observational study was to analyze
the plasma and urine metabolomic profiles of PAH patients
and healthy control subjects. We searched for correlations
between metabolite levels and clinical parameters among PAH
patients, as well as between-group differences in selected
plasma/urine metabolite levels. Furthermore, we proposed a
multivariate classification model based on measured metab-
olomic parameters, allowing for subject classification in terms
of PAH with the highest possible precision. The model’s
performance has also been thoroughly characterized.

2. MATERIALS AND METHODS

2.1. The Study Groups

This was an observational study that included 43 adult PAH
patients treated according to the Polish Health Fund program
in the Department of Cardiology Medical University of
Gdansk. This program was introduced in Poland in 2009
and included patients with a definite diagnosis of PAH and RV
failure of at least WHO Class III. The diagnosis of PAH was
established by RHC in the presence of an increase in mean
pulmonary arterial pressure >25 mmHg at rest and pulmonary
artery wedge pressure <15 mmHg in the absence of other
causes of precapillary pulmonary hypertension. Thus, patients
with pulmonary hypertension due to left heart disease, lung
disease, thromboembolic, or other rare disorders were
excluded. The date of PAH diagnosis corresponded to the
date of confirmatory RHC. Patients with Eisenmenger
syndrome and a confirmatory RHC in childhood did not
need to have the RHC repeated before implementation of the
PAH-specific treatment. Routine evaluation, performed every 6
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months, included PAH medical history and comorbidities,
assessment of the WHO functional class, physical examination,
electrocardiography (ECG), echocardiography, blood sample
analysis, and nonencouraged 6 min walk test (6MWT),
performed according to American Thoracic Society recom-
mendations. The baseline demographic and clinical character-
istics of PAH patients enrolled in this study are provided in
Table 1.

The control group (n = 37) consisted of age (p = 0.506), sex
(p = 0.193), and body-surface-area (p = 0.114) matched
healthy volunteers drawn from a general population. The study
was conducted in accordance with the Declaration of Helsinki
and was granted approval by the Ethical Committee of the
Medical University of Gdansk (number of approval: NKBBN/
204/2018). All participants included in this study signed their
informed consent forms.

2.2. Plasma and Urine Collection

Plasma and urine samples were collected from all PAH patients
and controls. First morning urine samples (10 mL) were
obtained as midstream urine specimens after perineal
cleansing. Fasting peripheral vein blood samples were collected
with S mL lithium heparin tubes. Urine samples were
centrifuged before storage (10 min, 2000g, at 4 °C). The
whole blood samples were centrifuged (10 min, 2000g, 4 °C)
to obtain plasma fractions. Collected urine and plasma samples
were stored at —80 °C until metabolomics experiments.
Directly before analysis, the urine and plasma samples were
thawed at room temperature or in ice, respectively.

2.3. Metabolomic Analyses Using the GC-MS Technique

Plasma and urine samples were 7prepared according to
previously published procedures.'®'” Briefly, urine samples,
after removing the redundant amount of urea, were diluted
with cold methanol, evaporated to dryness, and derivatized
with the use of a two-step procedure before analytical

https://doi.org/10.1021/acs.jproteome.3c00255
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measurements. Plasma samples were deproteinized with cold
methanol, evaporated to dryness, and underwent the same
two-step derivatization procedure before metabolomics anal-
yses. Detailed sample preparation procedures are presented in
Figure 1. Additionally, pooled biological samples prepared by
mixing the 50 uL aliquots of each plasma or urine sample were
used as the quality control samples (QC) to monitor the
system stability and method reproducibility during all sequence
runs. QCs were prepared according to the same procedures as
plasma and urine samples.

Plasma and urine metabolomic profiles were obtained with
the use of the GC-MS technique.'® Analytical measurements
were performed using GCMS-TQ8030 (Shimadzu, Japan)
equipped with an electron ionization source (EI). Here, 1 uL
of each urine and plasma sample was injected in a splitless
mode into a Zebron ZB-SMS column (30 m X 0.25 mm, 0.25
um, Phenomenex, USA). Details on parameters of the
previously optimized analytical method are described in the
Supporting Information (Figure S1).

The obtained raw data were processed (peak detection,
deconvolution, alignment, and compound identification) with
the use of Automated Mass Spectral Deconvolution and
Identification Software (AMDIS) with the NIST11 spectra
library (www.amdis.net) and in-house spectra library based on
the Wiley 10th library. Detected compounds were annotated
based on retention time (RT), retention index (RI), and mass
spectrum. Subsequently, data filtration was conducted using
MassProfiler Professional B.02.02 software (Agilent Technol-
ogies, Waldbronn, Germany). Data filtration was based on
compound frequency (presence in at least 80% of samples in
one out of two groups: PAH or control) and quality assurance
criteria (presence in at least 50% of all QCs and coefficient of
variation in peak intensity lower than 30%).'® The data
matrices obtained were normalized with the use of probabilistic
quotient normalization (PQN) prior to univariate and
multivariate statistical analyses.

2.4. Statistical Analysis

First, the reproducibility of analytical measurements was
verified by unsupervised principal component analysis
(PCA). Afterward, orthogonal partial least-squares discrim-
inant analysis (OPLS-DA) was used to select plasma and urine
metabolites, allowing the best discrimination between the
control and PAH groups.

The normality of both metabolomic and clinical data
distributions was checked using the Shapiro—Wilk W test.
Simple correlations between metabolomic and clinical
parameters in the PAH group were sought for by means of
Spearman’s rank correlation method, and the strength of
correlations was expressed by means of Spearman’s correlation
coeflicient rgp. Additionally, the proportion of overall variability
of the experimental data explained by the correlation was
expressed by the coefficient of determination R’. Results of
correlation analysis were then subject to unsupervised
clustering (using the Ward’s method) in order to identify
clusters of parameters with similar correlational behavior,
which were presented in the form of a correlation matrix (i.e.,
heatmap). For the sake of increased readability, the heatmap
shows only statistically and marginally significant (p < 0.06)
correlations. Simple differences between the control and PAH
groups in plasma and urine metabolic parameters were tested
for statistical significance using the Mann—Whitney U test, as
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many of the analyzed plasma and urine metabolic parameters
presented non-Gaussian distribution.

In the subsequent stage of statistical analysis, multivariate
modeling based on the linear discriminant analysis (LDA)
method was performed to obtain a classification model capable
of patient classification (control/PAH) based on measured
plasma and urine metabolite levels. The dimensionality of the
data set used in LDA modeling was further reduced by means
of yet another PCA step, the outcomes of which, combined
with those obtained from simple one-dimensional between-
group comparisons, were used to preselect the variables
involved further in the modeling. Hence, only metabolites with
statistically significant between-group differences (p < 0.1),
which, at the same time, were identified among the top
contributors (four metabolites with the highest positive and
the lowest negative variable loadings) to the first four PCA
components (the number of components was chosen
arbitrarily), were subsequently involved in the modeling.
Following this preselection step, an exhaustive examination
of all possible models from the second to the highest possible
order of dimensionality was performed. All examined models
were trained on a training set (70% of the initial data set) and
described by classification error, that is, the percentage of
incorrectly classified observations of the test set (30% of the
initial set). To increase the robustness of the examined LDA
models against the nonrandom split bias, random selection of
observations for the training and the test set, as well as the
classification error determination, was repeated SO times, and
each model was then characterized by the mean classification
error. The model with the lowest mean classification error was
then picked as the best classification model and further
analyzed by the receiver operating characteristic (ROC) curve
analysis to determine the best threshold value (Thres),
ensuring the highest possible model performance. Model
characteristics derived from the obtained ROC curve that
accurately describe the model performance given the
determined threshold value include the following: area under
the curve (AUC), sensitivity (Sens), specificity (Spec),
accuracy (Acc), and odds ratio (OR).

3. RESULTS

3.1. Initial Analysis of Metabolomic Signatures of the
Study Groups

Exemplary plasma and urine metabolomic profiles measured
with the use of the GC-MS technique are presented in Figure
S1. Raw data processing and filtration resulted in 65 and 77
plasma and urine metabolites, respectively, which were then
normalized prior to further statistical analysis and subject to
verification of reproducibility of analytical measurements by
PCA. Two-dimensional representations of all analyzed samples
based on the obtained PCA model for both plasma and urine
samples are presented in Figures S2 and S3 (panels A) in the
Supporting Information. In contrast to samples from PAH
patients and controls, the QC samples presented a relatively
high degree of clustering in PCA model-based representations,
which indicates the GC-MS system’s stability, the reproduci-
bility of the sample preparation procedures, and analytical
measurements, thus allowing us to assume that any metabolic
changes observed in PAH patients compared to controls were
mainly due to biological rather than analytical variation.
Based on the results of subsequent OPLS-DA modeling, the
initially selected panel of 65 and 77 metabolites was further

https://doi.org/10.1021/acs.jproteome.3c00255
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reduced to 18 plasma and 17 urine metabolites, which were
then involved in further statistical analyses (Figures S2 and S3,
panels B and Table 2). The panels of plasma and urine

Table 2. Panel of Both Blood Plasma and Urine Metabolites
Selected for Statistical Analysis

metabolite symbol”

pyruvic acid BP.1
leucine BP.2
valine BP.3
ribose BP.4
lysine BP.S
phosphoric acid BP.6
sucrose BP.7
3,4-dihydroxybutanoic acid BP.8
lactic acid BP.9
sorbitol BP.10
fructose BP.11
nonanic acid BP.12
maltose BP.13
octadecanoic acid BP.14
inositol BP.1S
cholesterol BP.16
3-butanoic acid BP.17
threonine BP.18
hippuric acid U.1
3(-3-hydroxyphenyl)-3-hydroxypropanoic acid U2
tagatose U3
butyric acid U4
1,2-benzenediol U.s
butanoic acid U.6
glucoheptonic acid u.7
2,3-dihydroxybutanoic acid U.8
acetic acid U9
2-oxo-glutaric acid U.10
threonic acid U.11
mannonic acid U.12
ribonic acid U.13
2-methyl-3-oxopropanoic acid U.14
2-propenoic acid U.1s
stearic acid U.16
lactose U.17

“BP = blood plasma and U = urine.

metabolites were selected by OPLS-DA based on VIP (>1.0)
and Ip(corr))l (>0.4) criteria. Most of these metabolites
showed non-Gaussian distribution in both groups; therefore,
their distributions were described by means of nonparametric
measures (median and interquartile range (IQR); Table S1).
In the case of clinical data (PAH subjects only), most of the
data (except for PCWP and PWR) showed normal
distribution. The mean and standard deviation (SD) were
thus used to describe the data distribution (Table S2).

3.2. between-Group Differences in Plasma and Urine
Metabolomic Profiles

Univariate analyses of simple between-group differences
between PAH patients and control subjects revealed that
PAH patients presented significantly higher median plasma
concentrations of ribose (p < 0.05), sucrose (p < 0.005), 3,4-
dihydroxybutanoic acid (p < 0.0005), and cholesterol (p <
0.01) but significantly lower median plasma concentrations of
pyruvic acid (p < 0.005), leucine (p < 0.001), valine (p <
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0.005), lysine (p < 0.05), lactic acid (p < 0.0005), and
threonine (p < 0.0001) as compared to controls.

In the case of urine samples, PAH patients were found to
show significantly higher median urine concentrations of
butyric acid (p < 0.0005), glucoheptonic acid (p = 0.005), 2-
pentanedioic acid (p < 0.0001), threonic acid (p < 0.05), and
ribonic acid (p < 0.05) but significantly lower median
concentrations of hippuric acid (p < 0.05), 3-hydroxypropionic
acid (p < 0.01), tagatose (p < 0.005), 1,2-benezediol (p <
0.01), butanoic acid (p < 0.005), and acetic acid (p < 0.05)
compared to controls. Graphical presentation of between-
group differences in plasma and urine metabolite concen-
trations are included in the Supporting Information (Figures
$4-S5).

3.3. Correlation Analysis of Plasma and Urine Metabolites
in PAH Patients

In simple correlation analyses, the metabolomic data (from
both blood plasma and urine) of PAH patients were correlated
with their clinical parameters. Figure 2 shows a correlation
matrix between clinical and metabolomic parameters in the
form of a heat map following the employment of unsupervised
hierarchical clustering. One can easily distinguish a cluster of
seven clinical parameters (PA.s, PA.mean, TPG, PA.,
PWR.Wood, RA.mean, and PCWP) that seem to present
moderate or relatively strong positive correlation with fructose,
cholesterol, stearic acid, leucine, and valine, while presenting
moderate or relatively strong negative correlation with
mannonic acid, sucrose, lactose, stearic acid, 2-oxo-glutaric
acid, and butyric acid. Full details on these correlations can be
found in a thorough summary of the correlation analyses in the
Supporting Information (Table S3). The most significant
correlations between clinical and metabolomic parameters
were selected based on p < 0.05 and Irsp | > 0.333 criteria.
However, correlations for only the most prognostic clinical
parameters are presented in Table 3.

3.4. Data Dimensionality Reduction

To further reduce the dimensionality of metabolomics data,
the panel of 18 plasma and 17 urine metabolites selected via
initial OPLS-DA modeling was further submitted to PCA, the
results of which were combined with the outcomes of the
above-described univariate analyses of simple between-group
differences (for details, see Materials and Methods). The
obtained outcomes suggest that the first four principal
components explain 39% of the initial variability of the data
set. Basic characteristics of these components, including SD,
variability, and the absolute and cumulative fractions of
variability of the initial data set explained by individual
components, can be found in the Supporting Information
(Table S4), while the structure of individual components is
presented in Table SS.

The first principal component (PC1), explaining 15% of the
data variability, was positively correlated with urine 2-
pentanedioic acid, threonic acid, and butyric acid as well as
plasma ribose levels. It was also negatively correlated with
urine butanoic acid as well as plasma stearic acid, valine, and
leucine levels (see Table SS). Furthermore, we found
significantly higher values of PC1 in the PAH group compared
to controls (p < 0.0001; Figure SS), which implies that PAH
patients, contrary to controls, can in general be expected to
show higher urine levels of 2-pentanedioic, threonic, and
butyric acids together with higher plasma ribose levels, as well
as lower urine levels of butanoic acid together with lower

https://doi.org/10.1021/acs.jproteome.3c00255
J. Proteome Res. 2024, 23, 2795-2804



Downloaded via CNIC on 09 de septiembre de 2024 at 7:16:14 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Journal of Proteome Research

pubs.acs.org/jpr

Color Key

E__.

04 0 04
Value

: ;. RA.mean
PCWP

E | puls.pressu
RR.syst

| '8 x6.MWD.m

RR.diast
B saturation
ez
&%

Figure 2. Correlation matrix showing the results of correlation analyses among metabolic and clinical parameters in the PAH group. Presented are
the values of the Spearman’s regression coefficients (rgp), whereas the full details (including the respective levels of significance) can be found in the
Supporting Information, Table S3. The unsupervised hierarchical clustering was conducted using Ward’s method.

Table 3. List of the Most Interesting Statistically Significant
Correlations between Metabolomic and Clinical Parameters
in the PAH Group Found in the Study”

correlation e R? p
6MDW (m) and threonine (BP18) 0412 0.169  0.014
RR.syst. and 3,4-dihydroxybutanoic acid 0.427  0.182 0.008
(BP8)

RR.diast and 2-methyl-3-oxopropanoic acid 0.334  0.112  0.043
(U14)

saturation and cholesterol (BP16) —0.555 0.309 0.014

pulse pressure and 3,4-dihydroxybutanoic acid 0.460 0212 0.004
(BP8)

PA.s and valine (BP3) 0.405 0.164  0.018
PA.s and butyric acid (U4) —0352  0.124  0.041
PA.d and valine (BP3) 0483 0233  0.004
PA.mean and valine (BP3) 0455 0207  0.007
PA.mean and stearic acid (BP14) 0.344 0.118 0.046
PA.mean and butyric acid (U4) -0.356  0.126  0.039
PCWP and butyric acid (U4) —0.400  0.160  0.029
RA.mean and butyric acid (U4) -0.426  0.181  0.017
CI and 1,2-benzenediol (US) 0.544 0296  0.032
PVR and stearic acid (BP14) 0.411 0.169 0.016
PVR and stearic acid (U16) —0.348  0.121  0.044

“6MDW (m): 6 min walking distance, RR.syst. (mmHg): systolic
blood pressure, RR.diast. (mmHg): diastolic blood pressure, PA.s
(mmHg): systolic pulmonary artery pressure, PA.d (mmHg): diastolic
pulmonary artery pressure, PAmean (mmHg): mean pulmonary
artery pressure, PCWP (mmHg): pulmonary capillary wedge pressure,
RA.mean (mmHg): mean right atrial pressure, CI (mL/kg/min):
cardiac index, PVR (Wood): pulmonary vascular resistance. Full
results of correlation analyses can be found in the Supporting
Information file (Table S1). rgp—Spearman’s correlation coefficient;
R*—coefficient of determination; p-level of significance.

plasma levels of stearic acid, valine, and leucine. The remaining
principal components did not show any statistically significant
differences between the groups (Figure S6).

Employing the data dimensionality reduction approach
resulted in reducing the panel of 35 metabolites to only 16,
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which were further involved in building the LDA model (Table
S6).

3.5. Linear Discriminant Analysis

In multivariate LDA-based modeling, only 16 previously
selected metabolites were involved. An exhaustive examination
of all possible models of the second to 16th order of
dimensionality was performed. In all, we thus examined 65 519
various models. The best LDA model was selected based on
the lowest mean classification error in a test set, which was
found to be 0.164 in the case of an eighth-order model
consisting of three plasma (pyruvic acid (BP.1), cholesterol
(BP.16), and threonine (BP.18)) and five urine (3-(3-
hydroxyphenyl)-3-hydroxypropanoic acid (U.2), butyric acid
(U.4), 1,2-benzenediol (U.S), glucoheptonic acid (U.7), and 2-
oxo-glutaric acid (U.10)) metabolites (Table 4). A summary of
mean classification errors in a test set of all examined models
can be found in the Supporting Information (Figure S7).
The model reached a high level of statistical significance (p <
0.0001), and the ROC analysis confirmed its relatively good
overall performance (see Figure 3). The area under the ROC
curve of the model was 0.93 (95% CIL: 0.87—0.99), model
sensitivity was 0.89 (95% CIL: 0.79—0.97), and its specificity

Table 4. Characteristics of the LDA Model with the Lowest
Mean Classification Error”

symbol metabolite Raw Struct
BP1 pyruvic acid 2.2300 0.5882
BP16  cholesterol —0.6498 —0.1867
BP18  threonine 0.2466  —0.0040
U2 3-(3-hydroxyphenyl)-3-hydroxypropanoic 0.4898 0.4943
acid
U4 butyric acid 1.0486 0.5213
Us 1,2-benzenediol 1.0785 0.4223
u7 glucoheptonic acid —1.9540  —0.4782
Ul0  2-oxo-glutaric acid —0.9902  —0.5636

“The table shows the structure of the best LDA model found in the
study with raw (Raw) and structure (Struc) coefficients for individual
variables in the model.

https://doi.org/10.1021/acs.jproteome.3c00255
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Figure 3. ROC curve with 95% confidence interval (blue field)
summarizing the performance of the best LDA model in a training set
of subjects. The value of 0.141 was revealed as the best threshold for
ensuring the best classification of subjects (AUC: 0.933 [0.874—
0.993]; sensitivity: 0.89 [0.79—0.97]; specificity: 0.93 [0.83—1.00];
accuracy: 0.91; OR = 119 [20.3—698.3]).

was 093 (95% CI: 0.83—1.00). The model reached an
accuracy of 91% and turned out to significantly improve
subject classification (OR = 119 [95% CI: 20.3—698.3], p <
0.0001).

4. DISCUSSION

In this study, we searched for plasma and urine metabolites
plausibly correlated with RHC parameters among PAH
patients. The panel of metabolites that were found to be
significantly correlated with clinical parameters included valine
and stearic acid measured in plasma as well as 2-methyl-
propanoic, 1,2-benzenediol, and stearic acid detected in urine
samples. Valine (2-amino-3-methyl-butanoic acid), as an
amino acid, serves as a precursor for the synthesis of various
molecules playing an essential role in homeostasis.'” In a
recent animal-based study, valine was observed to lower the
level of plasma triglycerides, thus having a positive effect on
lipid balance and, consequently, on the integrity of the vascular
wall?® Similar to these results, Noguchi et al. highlighted the
role of both valine and leucine in counteracting the impact of
abnormal lipid content, which is directly involved in the
production of atherosclerotic lesions.”" In our study, plasma
valine level was positively correlated with clinical parameters
constituting specific and diagnostic markers of the disease,
such as PAis, PA.d, and PA.mean. Higher plasma levels of
valine corresponded to higher PA.d and PA.mean values, which
could be related to disease progression.

In our study, the plasma level of stearic acid was positively
correlated with PA.mean and PVR, while the urine level of its
metabolite was negatively correlated with PVR. These
correlations are consistent with the progression of PAH.
Stearic acid, also known as octadecanoic acid, is a saturated
long-chain fatty acid with an 18-carbon backbone found in all
living organisms. Following its biosynthesis, it may undergo a
variety of reactions, including desaturation to oleate,”” after
which it then plays its role in the synthesis of triglycerides and
other complex lipids. Recently, a potential role of stearic acid
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in idiopathic pulmonary fibrosis (IPF) has been suggested by a
study reporting lower levels of stearic acid in IPF lung tissues
as compared to controls.”> Moreover, the same study provided
evidence on the antifibrotic role of stearic acid in a bleomycin-
induced lung fibrosis mouse model.”* It was concluded that
stearic acid may exert its antifibrotic activity by regulation of
profibrotic signaling and by reduction of TGF-f1-induced a-
SMA and collagen type 1 expression.””> Whether or not such
mechanisms may be relevant to PAH needs to be verified.

In our study, a significantly negative correlation between
urine butyric acid and PA.s, PA.mean, PCWP, and RA.mean
was observed in the PAH group. This correlation is consistent
with the severity of PAH. Regarding PCWP, its higher value
probably corresponds to disease progression, but the additional
impact of LV dysfunction and venous circulation should be
considered. Butyric acid is one of three common short-chain
fatty acids (SCFAs) in the human gut.”* In the colon, it serves
various crucial roles, such as constituting a source of energy for
endothelial cells, promoting cell differentiation and apoptosis,
and inhibiting colonic acidification.” It is also involved in
inhibition of breakdown of fats (via hydroxycarboxylic acid
receptor 2), as well as in stabilization of lipid metabolism (via
peroxisome proliferator-activated receptor), making it one of
the key compounds in regulation of lipid metabolism. Butyric
acid regulates inflammatory processes by stimulating the
production of eicosanoids”® and was shown to inhibit cancer
cell proliferation in the colon.”” In animal models, butyrate
supplementation can reduce atherosclerotic lesions and affect
arterial blood pleasure, showing a significant hypotensive effect
when its concentration in the colon increases.”® In general,
SCFAs are known as signaling molecules between gut
microbiota and host, with receptors in various cell and tissue
types.”” There is a well-established link between gut micro-
biota and coronary artery disease and atherosclerosis. The role
of changes in the gut and circulating microbiome in the
initiation of perivascular inflammation in the early patho-
genesis of PAH has also been reviewed.*

In PAH subjects, we further found that urine 1,2-
benzenediol levels were positively correlated with CIL. This
metabolite, also known as pyrocatechol (catechol), is formed
endogenously in biological systems from neurotransmitters
including adrenaline, noradrenaline, and dopamine, although it
is also a metabolite of many drugs like DOPA, isoproterenol,
and acetylsalicylic acid or a product of transformation of
xenobiotics.”’ Catechol was found to provoke necrotic,
apoptotic, and morphological changes, as well as increased
lipid peroxidation and protein carbonylation in peripheral
blood mononuclear cells, mainly lymphocytes.”> Furthermore,
the activity of catechol-O-methyltransferase (COMT), an
enzyme responsible for inactivation of catecholamines, was
recently studied in relation to regulation of blood pressure in
humans.”® Tt was suggested that multiple system atrophy
constitutes an excellent model for evaluating the effect of
subtle manipulations in norepinephrine metabolism on blood
pressure regulation in small numbers of subjects.

In our study, we also focused on searching for eventual
between-group differences in selected plasma and urine
metabolites, which would plausibly allow us to build a
classificator capable of proper subject classification into PAH
and control group based on observed metabolomic profile.
Elaborated on and presented was an eight-dimensional LDA
model, based on plasma pyruvic acid, cholesterol, and
threonine as well as urine 3-(3-hydroxyphenyl)-3-hydroxypro-

https://doi.org/10.1021/acs.jproteome.3c00255
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panoic acid, butyric acid, 1,2-benzenediol, glucoheptonic acid,
and 2-oxoglutaric acid. In the context of PAH pathogenesis,
especially pyruvic acid, 2-oxo-glutaric and cholesterol are
relevant and should be marked. Metabolic changes in these
substances are mainly related to alterations in glycolysis and
glucose oxidation, fatty acid metabolism, and tricarboxylic acid
(TCA) cycle.*

Glucose is metabolized to pyruvate through the glycolysis
pathway. In PAH, glucose metabolism is shifted from oxidative
phosphorylation toward glycolytic conversion to pyruvate and
subsequently to lactate. Such metabolic signatures were
observed in primary pulmonary artery endothelial cells
(PAEC) and pulmonary artery smooth muscle cell lines
(PASMC) derived from PAH lungs in the hearts and lungs of
patients with PAH in vivo, as well as in PAH animal
models.**7** The molecular mechanisms promoting the
shift to glycolysis in PAH are mainly related to the excessive
accumulation of hypoxia-inducible factor HIF-1. Upregulation
of this transcription factor was previously observed in
plexiform lesions, pulmonary arteries, and cardiomyocytes
from PAH patients.35'37’39'40 In this study, however, lower
plasma levels of pyruvate and lactate were observed, which
contradicts the above-described findings and requires further
investigation. It should be mentioned that previous observa-
tions were derived mainly from pathologically altered tissue
and cell samples. In this study, decreased plasma pyruvate and
lactate levels reflect global metabolic response for PAH.

Furthermore, 2-oxoglutaric acid, also known as alpha-
ketoglutaric acid (AKG), is a key molecule in the TCA
cycle, playing a fundamental role in determining the overall
rate of this metabolic pathway.*' The upregulation of the TCA
cycle was previously found in PAH lung tissue.'* Most
intermediates of the TCA cycle, including citrate and cis-
aconitate, were significantly increased in lung tissue. Moreover,
highly significant overexpression of the isocitrate dehydrogen-
ase 1 gene (IDHI, coding an enzyme catalyzing the AKG
production from isocitrate) in the lungs of PAH patients was
observed. Our findings concerning the AKG levels in urine
reported in this study corroborate well with the above-
mentioned reports, which further strengthens the hypothesis
that increased metabolites and related gene expression in the
TCA cycle may reflect abnormalities in mitochondrial function
in PAH patients.

In our study, we also observed increased blood plasma
cholesterol levels in PAH patients. It is well-known that in
blood plasma, cholesterol esters are transported as lipoprotein
particles such as chylomicrons and low-density and high-
density lipoproteins. Low-density lipoprotein cholesterol
(LDL-C) is a well-established marker of cardiovascular risk,**
but its association with PAH patients’ survival has also been
observed.*’ It was observed that LDL-C levels were low in
patients with PAH and were related to an increased risk of
death. Moreover, LDL-C levels appeared not to respond to PH
reversal, as they were found to be lower in both PAH and
chronic thromboembolic pulmonary hypertension (CTEPH)
patients undergoing invasive treatment as compared to
controls.”” HDL-C has recently also been reported to be
associated with PAH patients’ prognoses.”* This effect is
believed to be mediated by its vasoprotective activity, the main
role which is played by the vascular endothelium, also a crucial
player in PAH pathobiology. The potential vasoprotective
mechanisms of HDL in pulmonary circulation have been
reviewed.” In our study, we measured the plasma total levels
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of cholesterol, which were found to be increased in PAH
patients compared to the controls.

Several aspects need to be kept in mind while interpreting
the LDA-based classification model presented here. First, it
needs to be emphasized that it was built on a relatively small
study with only 80 subjects in total. Thus, it definitely deserves
further validation. Furthermore, only metabolites fulfilling
certain artificial preselection criteria entered the modeling
phase itself; thus, it cannot be ruled out that some variables
excluded from further modeling could have theoretically
improved model performance, at least to some extent, if they
were not excluded. Third, it is also possible that the
employment of different modeling approaches might have
led to a model with different structures with even improved
performance. Lastly, while the eighth-order model was
presented in the study as the model with the lowest mean
classification error, the overall performances of the best models
of the fifth- to ninth-order are quite comparable, as their mean
classification errors did not exceed 0.175 (data not shown).
The eighth-order model was selected as the best one solely on
the basis of the lowest mean classification error criterion. Once
the criterion of model dimensionality is additionally consid-
ered, it is quite possible that the sixth-order model would be
selected as the model of choice, as the reduction of model
dimensionality leads to only slight deterioration of the model’s
mean classification error (0.169) as compared to the eighth-
order model (see Table S6 in the Supporting Information).

This study has, admittedly, some limitations worth
mentioning. First, the findings presented here require
verification in the larger population to confirm clinical
relevance. Second, pulmonary hypertensive patients enrolled
in this study were under treatment and applied pharmaco-
therapy, including mainly bosentan, sildenafil, inhaled iloprost,
treprostinil, or combined therapy. However, the preliminary
impact of applied pharmacotherapy on the metabolic changes
observed in this study was evaluated and is provided in
Supporting Information (Table S7). Third, besides the fact
that mainly patients with PAH (50% with idiopathic one) were
included in the study, the mixed etiology remains a crucial
problem in clinical practice. Frequently, the pathogenesis of
PH can include hallmarks of different clinical groups, which
constitutes difficulties in the recognition of dominant etiology
and application of proper pharmacotherapy.

5. CONCLUSIONS

This pilot observational study applied untargeted metabolo-
mics and multivariate statistical analyses to evaluate relation-
ships between absolute values of plasma and urine metabolites
and clinical parameters, as well as to determine whether
metabolomic data could be used to build a classification model
allowing for relatively accurate subject classification in the
context of PAH. The statistically significant correlations
between valine, butyric acid, stearic acid, and 1,2-benzenediol
and 6MDW, PA.s, PA.mean, PCWP, and RA.mean, potentially
corresponding with the disease severity, were found. Addition-
ally, a panel of eight metabolites, namely pyruvic acid,
cholesterol, threonine, 3-(3-hydroxyphenyl)-3-hydroxypropa-
noic acid, butyric acid, 1,2-benzenediol, glucoheptonic acid,
and 2-oxo-glutaric acid, were found to build a relatively
accurate LDA-based classification model. The obtained results
revealed the great potential of metabolomics for molecular
insight into PAH pathobiology and pathophysiology.

https://doi.org/10.1021/acs.jproteome.3c00255
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The clinical relevance of this study includes the selection of
the metabolites’ panel specific for PAH. The selected panel of
metabolites has potential in early recognition of patients with
dyspnea, faster referral to a reference center with full
diagnostics, and therefore faster implementation of proper
pharmacotherapy. Additionally, RHC parameters are prognos-
tic; however, the test is invasive, so proposed metabolic
markers, especially detected in easy available and noninvasive
urine samples, could be useful in monitoring disease
progression after the implementation of specific PAH
pharmacotherapy.
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